domingo, 19 de febrero de 2012

Black-Scholes La Ecuacion.

  Hay una magnífica entrevista este Domingo en el periódico La Vanguardia.  Se trata de una entrevista al profesor emerito  de matemáticas de la Universidad de Warwick, en Reino Unido, Ian Stewart University of Warwick; en la misma nos desentraña de forma clara y muy amena una parte fundamental para que comprendamos como hemos llegado hasta donde estamos,es decir,como se llegó a una crisis tan profunda y con tan graves consecuencias.  Bueno esta es la entrevista.
¿Qué es la ecuación Black-Scholes?
La ecuación Black-Scholes se aplica a las opciones, que son acuerdos para comprar o vender una cosa a un precio específico en una fecha futura determinada. Por ejemplo, supongamos que queremos comprar un contrato de mil toneladas de trigo el 25 de septiembre de 2012 a 300 euros la tonelada.
Tomo nota
Los mercados financieros no solo establecen contratos de compra y venta a un vencimiento determinado, sino que permiten también comprar y vender esos mismos contratos antes de su vencimiento, como si fueran mercancías de pleno derecho. La gran pregunta entonces es, ¿de qué me sirve ese contrato? Si el dueño de la opción de trigo quiere vender el 11 de junio, ¿qué precio debería pedir? ¿Cuánto estaría dispuesto a pagar? La ecuación Black-Scholes especifica un determinado precio basado en el valor probable del trigo en su vencimiento. Matemáticamente, se entiende que el precio se desviará de manera aleatoria de acuerdo con el estado del mercado. El modelo calcula el precio en el que en teoría se elimina el riesgo al comprar una opción.
¿Usted cree que la ecuación Black-Scholes es la culpable de la crisis?
Si existe un único factor al que se puede culpar de la crisis financiera ese es la desregulación masiva de los mercados financieros en la era Bush-Thatcher. Aquello abrió la puerta a multitud de métodos contables dudosos y paralelamente alentó a los ejecutivos a tomar riesgos cada vez más elevados con el dinero de otras personas para su beneficio personal. Digamos que era un choque de trenes anunciado.
Entonces, ¿qué tienen que ver las matemáticas con la crisis?
Ahora lo entenderá. El crash financiero no lo causó un único factor. Dudo que nadie entienda al 100% todo lo que ocurrió. La ecuación Black-Scholes es solo uno de los muchos factores involucrados. El modelo contribuyó de una manera muy concreta: facilitó un crecimiento exagerado del mercado de opciones a lo largo de la última década de este siglo, ofreciendo precios estándar a opciones y otros derivados. Si un trader usaba la ecuación Black-Scholes y perdía dinero decían que era mala suerte, no una decisión sin apenas criterio por parte del trader. El mundo financiero se inundó de confianza. La ecuación funcionaba bien en condiciones normales de mercado, lo que alentó a los bancos a usarla. La economía mundial floreció durante un tiempo porque el mercado de opciones creció...
Y entonces...
El mercado de derivados creció a lo grande, demasiado rápido, y se perdió el control. Para empeorar las cosas, los banqueros y los traders pronto se olvidaron de las limitaciones de la ecuación, es decir, de los supuestos específicos acerca de cómo el precio de mercado es probable que cambie. Esos supuestos son demasiado simplistas en cuanto los mercados se ponen nerviosos. Se asume que los grandes cambios bruscos en el mercado son extraordinariamente poco probables. De hecho, este tipo de cambios repentinos y de gran calado que el modelo predice deberían ocurrir una vez cada un millón de años, aunque en realidad pueden suceder -y suceden- muchas veces en una semana, especialmente cuando los traders empiezan a perder los nervios y el pánico se apodera de ellos.
¿Cuál es el problema de este modelo?
Hay varios problemas. La ecuación, como cualquier otro modelo matemático que han inventado los seres humanos, se basa en suposiciones. El trabajo detrás de la elaboración de esta ecuación dejaba claro que existían unos supuestos. Todo el mundo era consciente de que dichos supuestos no siempre miden con precisión el comportamiento del mercado. Sin embargo, la 'sabiduría popular' estimó que las excepciones eran poco frecuentes y que existen formas de reducir o eliminar el riesgo asociado. Tal es así que se decidió usar una propiedad como garantía y nadie preguntó qué podía pasar con los valores de propiedad si el mercado se hundía.
Me suena...
Muchas de las personas que utilizaban la ecuación hicieron caso omiso a las limitaciones, algunos no se dieron cuenta siquiera de que las hubiera. De hecho, se utilizaba la ecuación como si fuera algo mágico que les podía proteger de cualquier daño. Los ejecutivos de los bancos no entendían de matemáticas y trataron al modelo Black-Scholes como si fuera el evangelio. Los analistas que sí sabían de matemáticas no entendían qué estaban haciendo sus jefes, simplemente se dedicaban entregar los informes con la suma de beneficios. Hubo falta de comunicación.
¿Se continúa usando esta fórmula hoy?
Los operadores siguen utilizando la ecuación Black-Scholes. Espero que ahora sepan apreciar los peligros, aunque no sé si el sistema bancario ha aprendido algo de todo esto al margen de cómo extraer enormes cantidades de dinero de los contribuyentes para pagar por sus errores.
Explíqueme de otras ecuaciones involucradas en el mundo financiero
Hay muchas otras ecuaciones y modelos matemáticos para diferentes tipos de instrumentos financieros, tales como los derivados, que son un poco como las opciones, pero más complicadas. Estos modelos pueden ser, y en muchos casos son, incluso menos fiables que la ecuación Black-Scholes. El sector financiero ha construido un sistema que proporciona grandes beneficios cuando funciona pero que es tremendamente inestable cuando deja de hacerlo. Es como fabricar coches que van a la velocidad del sonido pero no tienen volante ni frenos. Cuando la cosa funciona, todo el mundo llega a su destino a una velocidad increíble aunque no hace falta ser un genio para prever que será un peligro y que en algún momento dado se producirá un choque masivo.
Tal y como lo cuenta parece que todo el sistema financiero es una ficción matemática que afecta a la vida real y a la gente real
Estoy de acuerdo. Muchas cosas que son vitales para nuestras vidas son ficciones similares. El sistema financiero es una construcción humana compartida. La raíz de todo esto es el concepto de dinero. El dinero tiene valor, porque todos estamos de acuerdo en que tiene valor. Si cambiáramos de opinión mañana y nos negáramos a aceptarlo, el dinero se convertiría en algo inútil. El sector financiero ha construido un edificio enorme y complejo basado en el dinero, y muchas de las inestabilidades se producen porque el dinero puede ser hoy transferido de inmediato a la otra punta del mundo, algo que no se puede hacer con los coches o las vacas. El mundo virtual del dinero le ha ganado al mundo real de los coches y las vacas. Ningún ingeniero volvería a construir algo tan inestable... o a tener el derecho legal para hacerlo.
¿La economía mundial necesita más matemáticas?
Déjeme decirle primero que no fueron las matemáticas las que causaron el daño. La ecuación Black-Scholes ha sido solo un factor, y de hecho ha funcionado bien y sus supuestos continúan siendo válidos. Fue el abuso de las matemáticas las que ayudaron a desencadenar la crisis, junto con una docena de otras razones: los banqueros cegados por la codicia que prestaron dinero a personas que nunca podrían pagar, la gente que tomó prestado el dinero y que sabía que no podría pagar, los ministros del Gobierno que no se detuvieron ni un instante para preguntarse en qué se basaba toda aquella prosperidad económica...
(...)
El abandono por completo de las matemáticas no es una opción viable. El sistema es demasiado complejo para ser ejecutado mediante el sistema de ensayo error, los presentimientos o lo que le dicte a uno el corazón. Los traders y los banqueros a menudo piensan que tienen un instinto especial para los mercados, pero se auto-engañan. Los estudios demuestran que un mono tomando decisiones al azar lo hace tan bien como ellos en los mercados. Así que debemos utilizar un enfoque más científico, aunque solo sea para comprender la naturaleza de los mercados y por qué son inestables, algo que nos permitirá rediseñarlos, imponer regulaciones sensatas, etcétera. Los actuales modelos matemáticos no representan la realidad de manera adecuada, un objetivo debe ser el desarrollo de mejores modelos. Otro tiene que ser reeducar a los banqueros acerca de las peligrosas inestabilidades del sistema que han construido.
¿Es cierto que debido a los fundamentos del propio sistema financiero es más probable que perturbaciones como las actuales se repitan en periodos más cortos en el futuro?
A menos que cambie drásticamente, sí. Es evidente si nos fijamos en el historial de los últimos 20 años. En 2007 el sistema financiero internacional negociaba derivados por valor de un cuatrillón de dólares al año. Esto es diez veces el valor total, ajustado a la inflación, de todos los productos fabricados por las industrias manufactureras del mundo durante el último siglo. Y todo empezó a finales de 1990. Esto demuestra que la economía virtual de derivados es mucho mayor que la real de bienes y servicios. Las finanzas viven en una nube en el país de Nunca Jamás. Esto nos lleva a burbujas especulativas a punto de estallar y que costarán a millones de personas sus puestos de trabajo, sus hogares, sus matrimonios, sus pensiones y sus ahorros.
¿Y qué sugiere?
El principal objetivo del sector financiero en este momento es hacer cada vez más dinero y cada vez más rápido. El precio que se paga por ganar dinero muy rápido y en grandes cantidades es la inestabilidad masiva. También se puede perder muy rápido y en cantidades incluso mayores. A menos que se realicen cambios drásticos y fundamentales en el sistema en su conjunto el gran impacto que viene será mucho peor. De hecho, en la distancia, ahora estamos en el comienzo de la próxima crisis, y la crisis ha ido más allá de los bancos y afecta a naciones enteras. Los buitres están recogiendo ahora de las naciones, una a una. Grecia es la que toca este mes, ¿cuál será la próxima?

No hay comentarios: